skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashton, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract It has become increasingly useful to answer questions in gravitational-wave astronomy usingtransdimensionalmodels, where the number of free parameters can be varied depending on the complexity required to fit the data. Given the growing interest in transdimensional inference, we introduce a new package for the Bayesian inference Library (Bilby), calledtBilby. ThetBilbypackage allows users to set up transdimensional inference calculations using the existingBilbyarchitecture with off-the-shelf nested samplers and/or Markov Chain Monte Carlo algorithms. Transdimensional models are particularly helpful when seeking to test theoretically uncertain predictions described by phenomenological models. For example, bursts of gravitational waves can be modeled using a superposition ofNwavelets, whereNis itself a free parameter. Short pulses are modeled with small values ofN, whereas longer, more complicated signals are represented with a large number of wavelets stitched together. Other transdimensional models have been used to describe instrumental noise and the population properties of gravitational-wave sources. We provide a few demonstrations oftBilby, including fitting the gravitational-wave signal GW150914 with a superposition ofNsine-Gaussian wavelets. We outline our plans to further develop thetBilbycode suite for a broader range of transdimensional problems. 
    more » « less
  2. It has become increasingly useful to answer questions in gravitational-wave astronomy using transdimensional models where the number of free parameters can be varied depending on the complexity required to fit the data. Given the growing interest in transdimensional inference, we introduce a new package for the Bayesian inference Library (Bilby) called tBilby. The tBilby package allows users to set up transdimensional inference calculations using the existing Bilby architecture with off-the-shelf nested samplers and/or Markov Chain Monte Carlo algorithms. Transdimensional models are particularly helpful when we seek to test theoretically uncertain predictions described by phenomenological models. For example, bursts of gravitational waves can be modelled using a superposition of N wavelets where N is itself a free parameter. Short pulses are modelled with small values of N whereas longer, more complicated signals are represented with a large number of wavelets stitched together. Other transdimensional models have found use describing instrumental noise and the population properties of gravitational-wave sources. We provide a few demonstrations of tBilby, including fitting the gravitational-wave signal GW150914 with a superposition of N sine-Gaussian wavelets. We outline our plans to further develop the tbilby code suite for a broader range of transdimensional problems. 
    more » « less
  3. ABSTRACT The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical events in the catalogue, finding it to be consistent with the actual number of events included. 
    more » « less
  4. Standard sirens have been the central paradigm in gravitational-wave cosmology so far. From the gravitational wave signature of compact star binaries, it is possible to measure the luminosity distance of the source directly, and if additional information on the source redshift is provided, a measurement of the cosmological expansion can be performed. This review article discusses several methodologies that have been proposed to use gravitational waves for cosmological studies. Methods that use only gravitational-wave signals and methods that use gravitational waves in conjunction with additional observations such as electromagnetic counterparts and galaxy catalogs will be discussed. The review also discusses the most recent results on gravitational-wave cosmology, starting from the binary neutron star merger GW170817 and its electromagnetic counterpart and finishing with the population of binary black holes, observed with the third Gravitational-wave Transient Catalog GWTC–3. 
    more » « less
  5. ABSTRACT The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues. 
    more » « less